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USING ADAPTIVE ESTIMATION TO MINIMIZE THE NUMBER OF SAMPLES NEEDED TO
DEVELOP A RADIATION OR SCATTERING PATTERN TO A SPECIFIED UNCERTAINTY

Edmund K. Miller, Los Alamos National Laboratory (retired)
3225 Calle Celestial

Santa Fe, NM 87506-1213
ekmiller@prodigy.net

ABSTRACT essentially continuous representation of physical observables of
Obtaining far-field patterns in electromagnetics or acoustics, al- interest as opposed to the pointwise characterization that is usu-
though generally not as computationally expensive as solving for ally accepted when the cost of each GM evaluation is large. A
the sources induced on an object, can none-the-less at times be a list of acronyms used in the article follows the references.
substantial fraction of the overall computer time required for
some problems. This can be especially the case in determining
the monostatic radarcross section of large objects, since the cur- 2. BACKGROUND
rent distribution must be computed for each incidence angle, or One of the most frequently encountered problems in electromag-
when computing the radiation patterns of large reflectorantennas netic field computations is that of determining a radiation or
using physical optics. In addition, when employing the point scattering pattern from a current distribution(s) known over some
sampling and linear interpolation of the far field that is most surface. For antenna applications, usually a single current distri-
often used to develop such patterns, it can be necessary to sam- bution is of interest, while for RCS computations, a new current
ple very finely in angle to avoid missing fine details such as distribution arises for each incidence angle of a plane-wave excit-
nulls. A procedure based on model-based parameter estimation ing field. In either case, the far field is usually needed at enough
is described here that offers the opportunity of reducing the num- points to develop a smooth, in effect continuous, approximation
ber of samples needed while developing an easily computed and of the overall pattern in one or more planes. The required num-
continuous representation of the pattern. It employs windowed, ber of radiation-pattern samples and resulting OC are proportion-
low-order, overlapping fitting models whose parameters are esti- al to the maximum body dimension, L, in the plane in which
mated from the sparsely sampled far-field values. The fitting the pattern is being computed. Furthermore, the number of cur-
models themselves employ either discrete-source approximations rent samples on the surface, S, is itself is proportional to the
to the radiating currents or Fourier models of the far field. For body s surface area, i.e., S - L2 . As L, and therefore S, increas-
the cases investigated, as few as 1.5 to 2 samples per far-field es, the far-field computation can become a significant cost in ob-
lobe are found to be sufficient to develop a radiation-pattern esti- taining radiation and scattering patterns. Thus, reducing the
mate that is accurate to 0.1 dB, and 2.5 samples per lobe for a number of angle samples could be worthwhile in terms ofreduc-
simple scatterer. In general, however, the sampling density is ing the overall computer cost of obtaining the radiation pattern(s)
not determined by the lobe count alone, but by the effective rank of a large antenna or RCS of a large scatterer
of the field over the observation window, which in turn is a
function of both the aperture size and the spatial variation of the Some previous work by the author [2,3] and others [4,5] has de-
source distribution within that aperture. scribed an approach that uses MBPE to decrease the number of

samples that are needed to determine a far-field pattern. The
work presented in [2,3], is briefly summarized and extended

1. INTRODUCTION here, especially with respect to how the errors in the pattern can
An important goal of all numerical modeling is that of mini- be estimated and controlled and how the pattern itself is mod-
mizing the number of samples needed of the relevant observables eled. Further examples of efficient pattern computation can be
and equations so as to minimize the total computer operation found in the work of Bucci and his various collaborators who
count (OC) (or the computer cost) while achieving a desired ac- have developed signal-processing-like techniques for computing
curacy, or equivalently reducing the uncertainty to a specified far-field patterns [see for example 6, 7, and 8].
level, in the computed results. This topic is considered below in
the context of computing radiation and scattering patterns in
electromagnetics. The goal of particular interest here concerns 3. CHOOSING THE QUANTITY TO MODEL
minimizing the number of far-field pattern samples that are re- Estimating a far-field pattern using MBPE requires choosing the
quired to represent a radiation pattern and/or the number of inci- kind of reduced-orderFM that is to be used and to what observ-
dence angles that are required to develop a monostatic backscatter able that FM is to be applied. Two obvious choices for mini-
radar-cross section (RCS) pattern. An added benefit of the proce- mizing the number of pattern samples or incidence angles are
dure described below is that of obtaining an estimate of the un- available: 1) to model the current distribution; or 2) to model the
certainty in the pattern that is developed, far-field pattern. Furthermore, there are two ways in which the

current distribution itself might be modeled. These various
The approach taken employs model-based parameter estimation choices are briefly summarized below.
(MBPE) [1]. This is a procedure that uses reduced-order, physi-
cally based fitting models (FMs) whose parameters are computed 3.1 Modeling a Current (or Aperture) Distribution
from samples of first-principles generating models (GMs) such The two approaches to be discussed here for modeling
as Maxwell s Equations. Computation of a FM sample is trivial the current (or aperture) can be best described as Discrete-Source
compared with one evaluated from a GM for large, complex Approximations (DSAs). The current over the surface of the ob-
problems, potentially requiring orders-of-magnitude less comput- ject under consideration or field over an aperture is replaced by a
ing time. This makes it possible, using the FM, to develop an

1054-4887 © 2002 ACES
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linear array of discrete, or point, sources aligned in space as is denoted as the Fourier Series Pattern Model (FSPM). In this
described below. (Other point-source geometries might also be case the FM can be developed as [2]
used; attention is limited here to a linear geometry). The param-
eters of the DSA model are obtained by fitting it to far-field
samples obtained from the usual integration of the actual current Feia0 +•
distribution. The DSA is then used to approximate the pattern F(0) = RRe_+± ae
between these samples to thereby obtain a continuous estimate of a = S a = S (2)
the pattern without requiring additional current integrations.

3.1.1 Using A Prony Model where we set F equal to Int(L + 1), with Int(X) denoting the
Prony s method (or its equivalent) can be used value of X rounded off to the nearest lower integer. Also, 2F -

S - S = N with N the total number of terms in the FM, S f S
fn S + 1, and Ra and R -a are the amplitudes of the positive and

P

F(O) = XSae ikdacos(o)

a=1 (I)

which involves P point sources of strengths S. located at posi-

tions d. along the axis of the DSA° array, with 0 the angle to

the far field measured from that axis. There being 2N unknown 5
parameters in Eq. 1, the Prony DSA (PDSA) thus requires 2N X " - -

far-field samples of the actual pattern. Furthermore, these 2N
samples need to be spaced uniformly in cos(0), a feature that
makes PDSA less suitable for the adaptive-sampling approach __,_

described next. A possible advantage, however, of finding the L
locations of the discrete sources is the possibility of developing
an approximate image of the source whose far field is being sam- (a)
pled.

There are two different candidate DSA geometries that might be
considered. In the first, shown in Fig. la, the DSA axis is fixed
and a sequence of angle windows are rotated about this axis over
the complete range of observation angles of interest. In the sec-
ond, shown in Fig. Ib, the DSA axis is itself rotated to be per-
pendicular to the angle that defines the midpoint of each angle
window used for the successive DSA computations. Note that
L varies in proportion to the length of the object as seen from
the center of the observation window when using the approach of
Fig. l b whereas L is fixed at the maximum linear dimension of
the object in the observation plane for approach 1 a.

3.1.2 Using A Specified DSA 10
The specified DSA (SDSA) model is the same L

as Eq. 1 except that, since the source locations are now specified, (b)
only the N source strengths S (, are unknowns. As for the Prony Figure 1. Two ways of implementing the Discrete-Source Array
DSA, samples of the actual far-field are used to obtain the Fitting Model. In (a) the sampling window (denoted by alternately
discrete-source strengths. In contrast to the Prony model, how- light and heavy lines) rotates in angle about the long axis of the
ever, the pattern samples are not constrained in their placement object while the DSA FM axis remains fixed along which the dis-
but can be arbitrarily located in angle and only N are needed, two crete sources are located. In (b), on the other hand, the sampling
distinct over the Prony model. For the SDSA results presented aperture L' is rotated with respect to the long axis of the object
here, the sources are equally spaced along the array axis, with the and the sampling window is bisected by a line perpendicular to it.
source numbers I and N located at the ends of the aperture L Forthe case of the PDSA, an N-source FM requires a minimum of
using the configuration shown in Fig. la. As the order, i.e., 2N field samples. Both the source locations (indicated by the
number of sources used in a particular SDSA FM, is increased, X's) and their strengths are determined by sampling the far field
the source spacing is therefore systematically decreased in pro- as a function of cos(0), where generally the sources will be non-
portion to the number of sources that are used. uniformly spaced. Alternatively, for the SDSA used to obtain the

results presented here, the configuration (a) was used with N
3.2 Modeling the Pattern sources uniformly spaced along the array axis, thus requiring
An alternative to using a DSA for the pattern estimation only N field samples for computation of their strengths.

is to model the pattern itself, using a Fourier series, an approach
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negative modes respectively. As for the specified DSA, N far- few pattern lobes, say three or four at most. The number of lobes
field samples are required to quantify the parameters of the to be expected can generally be estimated from the size of the
FSPM. Note that the Fourier approach yields estimates of the aperture whose pattern is being modeled. However, it may hap-
far-field Fourier components directly, as contrasted with either of pen that adding a new GM sample to a FM causes its to rank ex-
the DSA FMs where the source strengths, and locations as well ceed some specified limit. By dividing such a FM into two
for the PDSA, are the parameters being computed. Ultimately, lower-order, overlapping ones, the problem of excess FM rank
however, the differences between the SDSA and the FSPM ame can be avoided and the initial number of FMs will not be so im-
rather slight, differing most in the former having an observation- portant.
angle dependence given by exp[ikdcos(0)] while the latter de-
pends on exp(ioc0). a N

o-,o-,- N- 1
3.3 Adaptive Estimation Using Windowed,

Overlapping Fitting Models 1,7
To be effectively implemented, any adaptive numerical

procedure requires an error estimate. For the specific problem of ."
adaptive pattern estimation, the error estimate is used to deter-
mine whether a given FM is accurate enough, and if not, where
in angle a new sample should be located. Various FM configu- -

rations might be considered in this application. For example, a 3
single FM might be used to span the entire angle window of in- 3
terest with an initial set of sample angles, S, chosen for GM
evaluation. A subset of these GM samples, S-I, could be used to
obtain the S-1 parameters of FM(S-1) while all S GM samples COS0
could be similarly used to find the S parameters of FM(S). Figure 2. A conceptual illustration of the use of overlapping fitting
These two FMs could then be sampled more finely, by a factor models for adaptive sampling of a far-field pattern. The horizontal
of 10 or so, in angle than was used for the initial GM sampling, lines indicate the angularextent of each FM with the open circles
with the difference between them serving as an error measure. If showing where the pattern (or GM) is initially sampled. In this par-
the error measure exceeds the allowable uncertainty specified by ticular case, all interior FMs begin with three GM samples while
the modeler, the S+ l th GM sample would be added at the angle those at either end use only two, for a total of N + 1 starting sam-
where the difference between FM(S-1) and FM(S) is greatest. ples. Additional GM samples are systematically located where
The parameters of FM(S+]) could then be computed and the dif- the maximum difference occurs between two overlapping FMsference between FM(S) and FM(S+1) obtained. The process until a specified convergence criterion has been satisfied. Only
would be systematically continued until the maximum difference two FMs overlap in any of the observation windows here, but
between FM(S+k-l) and FM(S+k) satisfies the uncertainty speci- other overlap arrangements could be used as well.
fication, with S+k the total number of GM samples required.
The initial number of GM samples to be used, S, would be cho- 3.4 Specification of the Fitting-Model Error and
sen to be proportional to the number of pattern lobes expected Computing the Final Pattern Estimateover the observation window. CmuigteFnlPtenEtmt

In contrast to specifying a fixed FM difference, or

Using a single FM to cover an entire pattern would generally not fitting-model error (FME), between overlapping FMs as was

be the best approach, however, partly due to the growing cost of donw te mn ituesmaximum FME can also be scaled relative to

the FM computation itself, but more importantly due to the fact
that the condition number of the data matrix needing solution for as the magnitude decreases the FNE might be proportionately
the FM parameters may increase unacceptably, especially for a increased to accommodate the fact that side-lobe maxima may
large number of pattern lobes. Instead, as is done here, a number not be needed to the same accuracy as the main lobe. In the re-largesuits to follow, the maximum permitted FME at the observation
of windowed, lower-order (i.e., fewer parameters) overlapping
FMs are used. Each FM shares two or more GM samples with angle 0 is given by

its neighbors, as is illustrated conceptually in Fig. 2 where there
are a total of N FMs. As above, after their parameters have been A 1
evaluated, the FMs are evaluatedmore finely in angle than was FME(O) = A1 + A IGM(Omax) - 1 FMcL(0)1
the GM pattern initially, and the differences between the sets of '1

overlapping FMs are computed. A new GM sample then is a cr= 1 I
added where the maximum difference between all sets of overlap-
ping FMs is found to occur. The respective parameters of the af- (3)
fected FMs (i.e., those whose windows contain the new sample
angle) are then updated, with the process of computing FM dif- where A1 and A2 are specified parameters, GM(Omax) is the
ferences and new GM samples continuing until the specified un- maximum value of the pattern being modeled, and FMcc(0) is
certainty is satisfied over the entire pattern window, the value of the a th FM at 0 where a total of M FMs overlap.

An appropriate choice for the number of FMs for a given prob- The parameter A determines the maximum acceptable FME in
lem might require some experimentation. If it s desired to keep the vicinity of the peak(s) of the GM. The parameterA 2 increas-
the order of all FMs below some specified value, then based on es the allowable FME in proportion to the decrease in the FM
the computer experiments done in getting the results presented values relative to GM(Omax). For the results that follow, the
below, each FM should have an angle window that spans just a nominal values for A1 and A2 were 0.1 and 0.05 dB, respective-
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ly, but FME(0) limited to a maximum value of 3 dB. There are window to be half overlapped with its nearest neighbors
many possible variations that might be used for setting the ac- seems to be a good choice. Note that using half-
ceptable error or uncertainty, among which would be relaxing the overlapped FMs leads naturally to a minimum of 3 ini-
desired accuracy in certain angular regions or increasing it in oth- tial GM samples per FM window as shown in Fig. 2.
ers consistent with the requirements of a particular application. 6) Finally, the kind of FM error to be used and its nu-

The final pattern estimate is then obtained by computing the av- merical parameters, as in Eq. (3), must be specified.
erage of the successively overlapping FMs as the observation
angle is scanned over the angle pattern. Thus, for M overlapping
FMs at angle 0 we would have 4. USING THE SPECIFIED DISCRETE-SOURCE

APPROXIMATION
_ 1+FIn previous work [2,3] the FSPM approach was described and

Fave,M(O) -[Fi(+) + .. + Fi+M-l]. some initial results presented, demonstrating that the far-field
M pattern could be estimated to an amplitude uncertainty of 0.01

(4) (about 0.05 dB) using only - 3 to 3.5 samples per lobe. Several

For the results presented below, M = 2 was used. ( results obtained using the alternate SDSA model are presented
here together with an illustration of how the model performance

Note that in addition to controlling the adaptation process, the depends on the uncertainty specification. The particularpatternserror specification provides a measure of the uncertainty in the used for testing the MBPE approach here were chosen as beingaverage FM values of Eq. 4. Since Eq. 3 gives the maximum representative of the kinds of patterns encountered in typical ap-variation permitted between the FMs that overlap at a given plications, as well as their having closed-form analytical expres-angle, it s proposed that sions, except for the last example of the random-source array.

4.1 The Far Radiated Field of the Uniform Current

FaveM+(O) = FaveM(O) ± FME(O) Filament
2 (5) The far field, F(O)UCF, of a uniform current filament (or

uniform aperture) is proportional to [10]
will yield realistic upper and lower error-bound estimates for the
average pattern values. That Eq. 5 does indeed provide a realis-
tic error bound relative to the FM estimates of GM is demon- F(0)UCF = L sin[itLsin(0)]
strated in the following examples. nLsin(0) (6)

It s worth emphasizing that, in contrast to using an entire-
domain basis for the far field, cylindrical- or spherical-wave ex- where the filament length L is expressed in wavelengths and the
pansions, for example, the windowed approach employed here observation angle 0 is measured from the filament axis. A total
together with discrete point sources can be applied to smaller, or of N = 13 FMs was used for an L = 20-wavelength UCF, ar-
limited, angular sectors with no computational penalty. Also ranged as shown in Fig. 2, with the parameters of Eq. 3 given
observe that in implementing the SDSA, angle sampling is done by A1 = 0.1 and A2 = 0.05 dB. Thus, all FMs initially have
in terms of cos(0) rather than 0. This is because the pattern three GM samples except for those on either end, which have
lobes tend to be distributed uniformly in terms of the former only two. This results in each FM sharing two samples with its
variable. nearest neighbors except for those on the end, which overlap

with one adjacent FM. Applying the SDSA to GM samples of
To summarize then, the following steps are involved in the Eq. 6 yields the results of Fig. 3, normalized to a maximum of
MBPE modeling of radiation and scattering patterns: 0 dB, where the upper and lower error-bound estimates for the

pattern peaks, using Eq. 5, and the actual pattern from Eq. 6 are
1) The quantity to be modeled, i.e., the source distribu- plotted. The actual pattern is seen to lie between the upper- and
tion or pattern itself, is first selected, lower-bound peaks throughout the entire window. In Fig. 4 the

ewindow over which the pattern is to average values of the overlapping FMs from Eq. 4, FMave, are
be estimated is specified. compared with the actual pattern, where 34 of the 35 GM sam-

ples used for computing the final FM parameters are also shown.

3) The number of pattern lobes, L, that are anticipated The maximum difference between the actual pattern and FMave
over the angle window of interest, considering the aper- is consistent with the error specification of Eq. 4 and the numeri-
ture size in wavelengths whose pattern is to be found, is cal values used for its parameters. With 35 samples needed to
estimated. estimate a pattern having 20 lobes or maxima, 1.75 samples are
4) The number, N, of initial fitting models to be used required per lobe for the UCF.

The behavior of three different error measures for the L = 20
then needs to be chosen. Choosing a value for N be- UCF is presented in Fig. 5 as a function of the number of GM
tween L/2 and 2L/3, with L expressed in wavelengths, samples used for computing the FM parameters. The upper plot
should provide a reasonable starting point, noting that on this graph shows the maximum difference between all pairs of
the smaller the value of N that is used the larger will be the 13 finely sampled, overlapping FMs as a function of the
the required FM order, number of GM samples used for their computation. The middle

5) The configuration of the FM overlap then needs to plot exhibits the difference between all pairs of overlapping FMs
be selected. This can be fairly flexible. Arranging each averaged over the angles they commonly sample. The bottom
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plot displays the angle-averaged difference between FMave and Observe that the difference between the overlapping FMs for this

the actual pattern, or the GM. Of these three, only the first two example always exceeds the corresponding FMave - GM differ-

would be available in actual application since the GM samples ence. This shows that the FM-FM error measure provides a con-

needed to compute the last error measure would be limited to servative, or high-side, estimate of the error (or uncertainty) in

those available up to that point in the adaptation process. It s FMa.e relative to the true GM values. Note also that the maxi-

useful to include the latter error measure, however, as the differ- mum FM difference does not decline monotonically. This is be-
ence between the FMave and the GM provides a reality check on cause updating two FMs can at times increase tile maximum dif-

the MBPE performance. ferences that then results with their overlapping neighbors.

-. 0-
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100 D-L20UCFP ttAdaptNew Figure 5. Three error measures discussed

in the text for the UCF shown as a function
of the number of GM samples used up to

V that point in the adaptation process over an
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4.2 The Far Radiated Field of the Sinusoidal lobe, midway between that required for the scatterer and the
Current Filament SCF. The number of samples needed per lobe or per wavelength
The normalized far field of a center-fed sinusoidal cur- of aperture to achieve the same specified estimation accuracy (as

rent filament (SCF)'L wavelengths long is proportional to [10] given by Eq. 3 with A1 and A2 0.1 dB and 0.05 dB, respective-

ly) for the various sources considered here is summarized in

FSCF(e) = cos(nLcosO) - cos(rtL) Table I below.

)sin0 (7) 5. CONCLUDING OBSERVATIONS CONCERNING

ESTIMATION UNCERTAINTY AND SAMPLING
Application of adaptive MBPE to an L = 20-wavelength SCF The preceding examples demonstrate that adaptive sampling of
using N = 13 overlapping FMs as shown in Fig. 2 leads to the radiation and scattering patterns using MBPE with discrete-
upper- and lower-bound estimates for the far field shown together source-approximation FMs can be effective in not only reducing
with the actual pattern in Fig. 6. Again, the actual field values the number of samples needed to obtain a reduced-order, continu-
are seen to lie between the bounding curves provided by MBPE ous representation of a pattern, but also in constraining the esti-
adaptive sampling. A comparison of FMave with the actual pat- mated pattern to satisfy an uncertainty specification. Some addi-

tern is presented in Fig. 7 where most of the 40 GM samples tional computations are included here to shed further light on the
used for the FM computation are also shown (some fall below - sampling requirements. The L = 20 UCF problem was repeated
20 dB). The actual and FMave curves are essentially graphically using A1 = 0.05 and A2 = 0 dB to reduce the estimation uncer-

indistinguishable on the scale used. The 20-wavelength SCF tainty to a smaller, and constant, value compared with the criteri-
has only 10 lobes ratherthan the 20 lobes of the 20-wavelength on used in obtaining the previous results. Using these coeffi-
UCF over the same -I to 0 cos(e) interval, but requires 6 more cient values in the FME given by Eq. 3 results in a maximum
unknowns to achieve the same estimation uncertainty, or 4 sam- acceptable difference between overlapping FMs, and hence, a
ples per lobe. This indicates that the number of GM samples maximum estimation error, of no more than 0.05 dB. This is
needed to achieve a given pattern-estimation uncertainty is sensi- much less than might normally be sought in practice but pro-
tive not only to the lobe structure of the pattern itself, but also vides a more stringent test of the MBPE procedure. It should be
to the spatial variation of the source distribution that produces noted that if the GM samples are of limited accuracy, for exam-
that pattern. ple being derived from a numerical first-principles model for a

complex problem, then seeking an accuracy in the pattern esti-
4.3 The Far Field Scattered from a Thin, Circular mate that the GM samples cannot provide might result in stag-
Cylinder nating the estimation process, i.e., convergence may not occur.
The GM here is the approximate far, scattered field of a But when using an analytical expression for a pattern, as is done

thin, circular cylinder L wavelengths long, which is proportional here, this will not be a problem. It s also worth noting that the
to [11] variational relationship between the far fields and the sources that

produce them results in errors in the latter not translating into
2 , sin(22TLsin0i) 12 comparable errors in the former.RCS• F2yL0=1 CoOS~ i/l

FCYL( 2nLsin0i J Upon running the L = 20-wavelength UCF problem using these
new values for the FME coefficients and plotting the same error

(8) measures as for Fig. 5, the results shown in Fig. 12 are ob-
tained. Also included in Fig. 12 are lines of the form Aexp(-Bx)for which MBPE adaptive sampling produces the results shown where x is the number of GM samples and A and B are best-fit

in Figs. 8 and 9 for L = 10 wavelengths with 7 FMs being used.

In contrast with an L-wavelength SCF, where the number of parameters. It s interesting to see that the three best-fit lines are
-L/2 and the UCF nearly parallel, with all decreasing exponentially as a function of

lobes over a -1 to 0 interval in cos(0) is~L d th the number of GM samples. This behavior is similar to the con-
which has - L lobes over that same interval, the L-wavelength vergence of numerical solutions for various wire geometries as
scattererhas 2L lobes, 20 in this example. As for the previous the number of unknowns in a moment-method solution is in-
cases, the FMave, as obtained from 48 GM samples, and a finely creased. A 0.1 dB in the angle-averaged FM difference and the

sampled GM plot for the scatterer are graphically indistinguish- difference between the FMave and the actual pattern is achieved
able. The number of samples required per lobe for the 10- using about 37 GM samples.
wavelength cylinder scatterer is thus 2.4, greater than the 1.75
needed for the UCF even though their patterns are quite similar, This computation was repeated for UCFs having lengths of L
as can be seen by comparing Figs. 4 and 9. 10, 15 and 25 wavelengths, yielding the results of in Fig. 13

where, for clarity, only the FM-FM differences are plotted. The
4.4 The Far Radiated Field of a Randomized Array data for each of these UCF lengths are found to be fit compara-
of Point Sources bly well by exponentials having different slopes. This is an ex-
The last example considered here is a linear array of 2 1, pected result since the number of GM samples needed to achieve

isotropic point sources having random amplitudes varying be- a given uncertainty for a specified source distribution is expected
tween -A and +1 and located randomly within a 10-wavelength to be related to the number of pattern lobes which are, in turn,
aperture. Results for cos(0) varying from -1 to 0 are shown in proportional to the aperture size. When the latter effect is re-
Figs. 10 and 11, again using 13 FMs. A total of 26 GM sam- moved by replotting the data of Fig. 13 as a function of the
ples is needed to achieve the same specified estimation error as number of GM samples per wavelength of aperture, the results
used for the previous cases. Since there are on the order of 8.5 shown in Fig. 14 are obtained. The best-fit lines for the various
maxima in the pattern, this works out to about 3 samples per
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UCF lengths are nearly coincident, shifting to the left slightly Since a UCF L-wavelengths in extent produces L lobes per 90
with increasing L and exhibiting slopes that are within about deg in its pattern, this sampling density translates to about 2
1.5%. A 0.1 dB angle-averaged FM difference is seen to require samples per lobe as well. As can be deduced from Table I, it s
about 2 samples per wavelength of aperture. clear that the far-field sampling density depends on more than

just the lobe count in the pattern.
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How this sampling density might generalize to 2D or 3D source cuts for the radiation patterns of 3D source distributions as well.
distributions needs to be considered. First note that the sam-
pling density of 2 per wavelength of aperture for the UCF ap- Results obtained for the cylinder scatterer indicate, on the other
plies to a pattern symmetric about broadside where an angle- hand, that nearly 5 samples per wavelength of cylinder length are
observation window of only 90 deg needs to be sampled. For a required for the same kind of pattern-estimation accuracy for a
non-symmetric, but otherwise equivalent, linear source distribu- 90-deg sector of the scattered field to be estimated. Following
tion this would then work out to 4 samples per wavelength since the same line of reasoning as above for a general 2D scatterer, or
a far-field window of 180 deg would then need to be sampled. for planar cuts of 3D objects, sampling over 360 deg can be esti-
For a true 2D source whose pattern has to be sampled over 360 mated to require on the order of 20 samples per wavelength.
deg, this would imply that 8 samples per wavelength of its max- One obvious question arises about why a greater sampling densi-
imum linear aperture are needed to achieve a comparable pattern ty is apparently needed for a scattering pattern as compared with
accuracy of 0.1 dB. This measure would seem to hold in planar a radiation pattern when the two are similar-appearing, as exhib-
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ited by Figs. 4 and 9? Perhaps the answer is that for the latter For the simplest case of two point sources, as L is increased, the
situation a single current distribution produces the entire radiated number of pattern lobes over 360 deg in an observation plane
field. For the former, on the other hand, the current distribution, containing the sources will be of order 4L. However, R, as de-
being a function of the angle of incidence, changes with every termined by eigenvalue analysis of the data matrix that arises
viewing angle when determining the monostatic radar cross sec- when using Prony s method remains fixed at two when L ex-
tion. ceeds 0.5, regardless of how large the aperture is made and how

many lobes are in the pattern. On the other hand, if L is fixed
It would also seem to follow then that the number of GM sam- and the number of point sources is systematically increased, R
ples needed to achieve a specified estimation uncertainty must will increase proportionately until N > 2L whereupon R remains
depend on both the aperture size and spatial variation of the fixed at - 2L since only about 2 source/wavelength can be re-
source within it, a dependence that ultimately is exhibited by the solved in the far field. Because it can model such point-source
pattern rank (R) or the number of degrees of freedom of the arrays, a Prony-based procedure can exploit the reduced rank of
pattern, over the chosen observation window. As a specific ex- such special problems, but the discrete-source approximation and
ample of how the source characteristics and aperture might influ- a Fourier model of the far field are not as well-suited for doing
ence the rank, consider an aperture L-wavelengths long having N so. Generally speaking, with everything else being equal, the
point sources uniformly spaced within it. best pattern estimator would be one for which the number of

GM samples can be reduced to as close to R as possible. More
investigation is needed to settle these issues, and to generalize
the results beyond the simple cases considered here.
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TABLE 1: FAR-FIELD SAMPLING REQUIRED OVER A 90- 8. 0. M. Bucci, C. Gennarelli and C. Savarese, Representation
deg WINDOW FOR SOURCES TESTED USING A1 = 0.1 of Electromagnetic fields Over Arbitrary Surfaces by a Finite and

AND A2 = 0.05 dB in Eq. 3. Nonredundant Number of Samples, IEEE Antennas and Propa-
gation Society Transactions, Vol. 46, No. 3, pp. 315-359,

SOURCE TYPE NUMBER FAR-FIELD FAR-FIELD March 1998.
TESTED OF SAM- SAMPLES/ SAMPLES/

PLES LOBE WAVELENGTH 9. R. W. Hamming, Numerical Methods for Scientists and
= OF APERTURE Engineers, Dover Publications, Inc., New York, 1962.

20-WL 40 4 2 10. C. A. Balanis, Antenna Theoiy: Analysis and Design,
SINUSOIDAL Harper & Row, Publishers, New York, 1982.

CURRENT
FILAMENT 11. E. G. Knott, J. F. Shaefferand M. T. Tuley, Radar Cross

10-WL 26 3 2.6 Section, 2nd Edition, Artech House, Boston, 1993.

RANDOMIZED
ARRAY ACRONYMS

10-WL CYLINDER 48 2.4 4.8 DSA--Discrete-Source Approximation
SCATTERER FM--Fitting Model

20-WL UNIFORM 35 1.75 1.75 FME--Fitting-Model Error
CURRENT FSPM--Fourier Series Pattern Model
FILAMENT GM--Generating Model

MBPE--Model-Based Parameter Estimation
OC--Operation Count
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